1,253 research outputs found

    ALMA observations of the debris disk around the young Solar Analog HD 107146

    Get PDF
    We present ALMA continuum observations at a wavelength of 1.25 mm of the debris disk surrounding the ∼\sim 100 Myr old solar analog HD 107146. The continuum emission extends from about 30 to 150 AU from the central star with a decrease in the surface brightness at intermediate radii. We analyze the ALMA interferometric visibilities using debris disk models with radial profiles for the dust surface density parametrized as i) a single power-law, ii) a single power-law with a gap, and iii) a double power-law. We find that models with a gap of radial width ∼8\sim 8 AU at a distance of ∼80\sim 80 AU from the central star, as well as double power-law models with a dip in the dust surface density at ∼70\sim 70 AU provide significantly better fits to the ALMA data than single power-law models. We discuss possible scenarios for the origin of the HD 107146 debris disk using models of planetesimal belts in which the formation of Pluto-sized objects trigger disruptive collisions of large bodies, as well as models which consider the interaction of a planetary system with a planetesimal belt and spatial variation of the dust opacity across the disk. If future observations with higher angular resolution and sensitivity confirm the fully-depleted gap structure discussed here, a planet with a mass of approximately a few Earth masses in a nearly circular orbit at ∼80\sim 80 AU from the central star would be a possible explanation for the presence of the gap.Comment: (38 pages, 7 figures, accepted for publication in ApJ

    ALMA Cycle 1 Observations of the HH46/47 Molecular Outflow: Structure, Entrainment and Core Impact

    Full text link
    We present ALMA Cycle 1 observations of the HH46/47 molecular outflow using combined 12m array and ACA observations. The improved angular resolution and sensitivity of our multi-line maps reveal structures that help us study the entrainment process in much more detail and allow us to obtain more precise estimates of outflow properties than previous observations. We use 13CO(1-0) and C18O(1-0) emission to correct for the 12CO(1-0) optical depth to accurately estimate the outflow mass, momentum and kinetic energy. This correction increases the estimates of the mass, momentum and kinetic energy by factors of about 9, 5 and 2, respectively, with respect to estimates assuming optically thin emission. The new 13CO and C18O data also allow us to trace denser and slower outflow material than that traced by the 12CO maps, and they reveal an outflow cavity wall at very low velocities (as low as 0.2km/s with respect to the cores central velocity). Adding with the slower material traced only by 13CO and C18O, there is another factor of 3 increase in the mass estimate and 50% increase in the momentum estimate. The estimated outflow properties indicate that the outflow is capable of dispersing the parent core within the typical lifetime of the embedded phase of a low-mass protostar, and that it is responsible for a core-to-star efficiency of 1/4 to 1/3. We find that the outflow cavity wall is composed of multiple shells associated with a series of jet bow-shock events. Within about 3000AU of the protostar the 13CO and C18O emission trace a circumstellar envelope with both rotation and infall motions, which we compare with a simple analytic model. The CS(2-1) emission reveals tentative evidence of a slowly-moving rotating outflow, which we suggest is entrained not only poloidally but also toroidally by a disk wind that is launched from relatively large radii from the source.Comment: Accepted for publication in ApJ. 26 pages, 20 figure

    A multi-wavelength analysis for interferometric (sub-)mm observations of protoplanetary disks: radial constraints on the dust properties and the disk structure

    Full text link
    Theoretical models of grain growth predict dust properties to change as a function of protoplanetary disk radius, mass, age and other physical conditions. We lay down the methodology for a multi-wavelength analysis of (sub-)mm and cm continuum interferometric observations to constrain self-consistently the disk structure and the radial variation of the dust properties. The computational architecture is massively parallel and highly modular. The analysis is based on the simultaneous fit in the uv-plane of observations at several wavelengths with a model for the disk thermal emission and for the dust opacity. The observed flux density at the different wavelengths is fitted by posing constraints on the disk structure and on the radial variation of the grain size distribution. We apply the analysis to observations of three protoplanetary disks (AS 209, FT Tau, DR Tau) for which a combination of spatially resolved observations in the range ~0.88mm to ~10mm is available (from SMA, CARMA, and VLA), finding evidence of a decreasing maximum dust grain size (a_max) with radius. We derive large a_max values up to 1 cm in the inner disk between 15 and 30 AU and smaller grains with a_max~1 mm in the outer disk (R > 80AU). In this paper we develop a multi-wavelength analysis that will allow this missing quantity to be constrained for statistically relevant samples of disks and to investigate possible correlations with disk or stellar parameters.Comment: 19 pages, 15 figures, accepted for publication in A&

    Efficacy of a T Cell-Biased Adenovirus Vector as a Zika Virus Vaccine

    Get PDF
    Zika virus (ZIKV) is a major public health concern due to the risk of congenital Zika syndrome in developing fetuses and Guillain-Barre syndrome in adults. Currently, there are no approved vaccines available to protect against infection. Adenoviruses are safe and highly immunogenic vaccine vectors capable of inducing lasting humoral and cellular immune responses. Here, we developed two Adenovirus (Ad) vectored Zika virus vaccines by inserting a ZIKV prM-E gene expression cassette into human Ad types 4 (Ad4-prM-E) and 5 (Ad5-prM-E). Immune correlates indicate that Ad5-prM-E vaccination induces both an anti-ZIKV antibody and T-cell responses whereas Ad4-prM-E vaccination only induces a T-cell response. In a highly lethal challenge in an interferon α/β receptor knockout mice, 80% of Ad5 vaccinated animals and 33% of Ad4 vaccinated animals survived a lethal ZIKV challenge, whereas no animals in the sham vaccinated group survived. In an infection model utilizing immunocompetent C57BL/6 mice that were immunized and then treated with a blocking anti-IFNAR-1 antibody immediately before ZIKV challenge, 100% of Ad4-prM-E and Ad5-prM-E vaccinated mice survived. This indicates that Ad4-prM-E vaccination is protective without the development of detectable anti-ZIKV antibodies. The protection seen in these highly lethal mouse models demonstrate the efficacy of Ad vectored vaccines for use against ZIKV

    uvbyCa H beta CCD Photometry of Clusters. VII. The Intermediate-Age Anticenter Cluster Melotte 71

    Full text link
    CCD photometry on the intermediate-band uvbyCa H beta system is presented for the anticenter, intermediate-age open cluster, Melotte 71. Restricting the data to probable single members of the cluster using the color-magnitude diagram and the photometric indices alone generates a sample of 48 F dwarfs on the unevolved main sequence. The average E(b-y) = 0.148 +/- 0.003 (s.e.m.) or E(B-V) = 0.202 +/- 0.004 (s.e.m.), where the errors refer to internal errors alone. With this reddening, [Fe/H] is derived from both m1 and hk, using H beta and b-y as the temperature index, with excellent agreement among the four approaches and a final weighted average of [Fe/H] = -0.17 +/- 0.02 (s.e.m.) for the cluster, on a scale where the Hyades has [Fe/H] = +0.12. When adjusted for the higher reddening estimate, the previous metallicity estimates from Washington photometry and from spectroscopy are now in agreement with the intermediate-band result. From comparisons to isochrones of appropriate metallicity, the cluster age and distance are determined as 0.9 +/- 0.1 Gyr and (m-M) = 12.2 +/- 0.1 or (m-M)_0 = 11.6 +/- 0.1. At this distance from the sun, Mel 71 has a galactocentric distance of 10.0 kpc on a scale where the sun is 8.5 kpc from the galactic center. Based upon its age, distance, and elemental abundances, Mel 71 appears to be a less populous analog to NGC 3960.Comment: Accepted for Astronomical Journal. 38 page latex file includes 11 figures and short version of data table. Full table will appear in online AJ or may be requested from author

    Observing the Sun with Atacama Large Millimeter/submillimeter Array (ALMA): High Resolution Interferometric Imaging

    Get PDF
    Observations of the Sun at millimeter and submillimeter wavelengths offer a unique probe into the structure, dynamics, and heating of the chromosphere; the structure of sunspots; the formation and eruption of prominences and filaments; and energetic phenomena such as jets and flares. High-resolution observations of the Sun at millimeter and submillimeter wavelengths are challenging due to the intense, extended, low- contrast, and dynamic nature of emission from the quiet Sun, and the extremely intense and variable nature of emissions associated with energetic phenomena. The Atacama Large Millimeter/submillimeter Array (ALMA) was designed with solar observations in mind. The requirements for solar observations are significantly different from observations of sidereal sources and special measures are necessary to successfully carry out this type of observations. We describe the commissioning efforts that enable the use of two frequency bands, the 3 mm band (Band 3) and the 1.25 mm band (Band 6), for continuum interferometric-imaging observations of the Sun with ALMA. Examples of high-resolution synthesized images obtained using the newly commissioned modes during the solar commissioning campaign held in December 2015 are presented. Although only 30 of the eventual 66 ALMA antennas were used for the campaign, the solar images synthesized from the ALMA commissioning data reveal new features of the solar atmosphere that demonstrate the potential power of ALMA solar observations. The ongoing expansion of ALMA and solar-commissioning efforts will continue to enable new and unique solar observing capabilities.Comment: 22 pages, 12 figures, accepted for publication in Solar Physic

    Observing the Sun with the Atacama Large Millimeter-submillimeter Array (ALMA): Fast-Scan Single-Dish Mapping

    Get PDF
    The Atacama Large Millimeter-submillimeter Array (ALMA) radio telescope has commenced science observations of the Sun starting in late 2016. Since the Sun is much larger than the field of view of individual ALMA dishes, the ALMA interferometer is unable to measure the background level of solar emission when observing the solar disk. The absolute temperature scale is a critical measurement for much of ALMA solar science, including the understanding of energy transfer through the solar atmosphere, the properties of prominences, and the study of shock heating in the chromosphere. In order to provide an absolute temperature scale, ALMA solar observing will take advantage of the remarkable fast-scanning capabilities of the ALMA 12m dishes to make single-dish maps of the full Sun. This article reports on the results of an extensive commissioning effort to optimize the mapping procedure, and it describes the nature of the resulting data. Amplitude calibration is discussed in detail: a path that utilizes the two loads in the ALMA calibration system as well as sky measurements is described and applied to commissioning data. Inspection of a large number of single-dish datasets shows significant variation in the resulting temperatures, and based on the temperature distributions we derive quiet-Sun values at disk center of 7300 K at lambda=3 mm and 5900 K at lambda=1.3 mm. These values have statistical uncertainties of order 100 K, but systematic uncertainties in the temperature scale that may be significantly larger. Example images are presented from two periods with very different levels of solar activity. At a resolution of order 25 arcsec, the 1.3 mm wavelength images show temperatures on the disk that vary over about a 2000 K range.Comment: Solar Physics, accepted: 24 pages, 13 figure

    On the structure of the transition disk around TW Hya

    Get PDF
    For over a decade, the structure of the inner cavity in the transition disk of TW Hydrae has been a subject of debate. Modeling the disk with data obtained at different wavelengths has led to a variety of proposed disk structures. Rather than being inconsistent, the individual models might point to the different faces of physical processes going on in disks, such as dust growth and planet formation. Our aim is to investigate the structure of the transition disk again and to find to what extent we can reconcile apparent model differences. A large set of high-angular-resolution data was collected from near-infrared to centimeter wavelengths. We investigated the existing disk models and established a new self-consistent radiative-transfer model. A genetic fitting algorithm was used to automatize the parameter fitting. Simple disk models with a vertical inner rim and a radially homogeneous dust composition from small to large grains cannot reproduce the combined data set. Two modifications are applied to this simple disk model: (1) the inner rim is smoothed by exponentially decreasing the surface density in the inner ~3 AU, and (2) the largest grains (>100 um) are concentrated towards the inner disk region. Both properties can be linked to fundamental processes that determine the evolution of protoplanetary disks: the shaping by a possible companion and the different regimes of dust-grain growth, respectively. The full interferometric data set from near-infrared to centimeter wavelengths requires a revision of existing models for the TW Hya disk. We present a new model that incorporates the characteristic structures of previous models but deviates in two key aspects: it does not have a sharp edge at 4 AU, and the surface density of large grains differs from that of smaller grains. This is the first successful radiative-transfer-based model for a full set of interferometric data.Comment: 22 pages, 12 figures, accepted for publication in Astronomy & Astrophysic

    Multi-Transition Study of M51's Molecular Gas Spiral Arms

    Get PDF
    Two selected regions in the molecular gas spiral arms in M51 were mapped with the Owens Valley Radio Observatory (OVRO) mm-interferometer in the 12CO(2-1), 13CO(1-0), C18O(1-0), HCN(1-0) and HCO+(1-0) emission lines. The CO data have been combined with the 12CO(1-0) data from Aalto et al. (1999) covering the central 3.5kpc to study the physical properties of the molecular gas. All CO data cubes were short spacing corrected using IRAM 30m (12CO(1-0): NRO 45m) single dish data. A large velocity gradient (LVG) analysis finds that the giant molecular clouds (GMCs) are similar to Galactic GMCs when studied at 180pc (120pc) resolution with an average kinetic temperature of T_kin = 20(16)K and H_2 density of n(H_2) = 120(240)cm^(-3) when assuming virialized clouds (a constant velocity gradient dv/dr. The associated conversion factor between H_2 mass and CO luminosity is close to the Galactic value for most regions analyzed. Our findings suggest that the GMC population in the spiral arms of M51 is similar to those of the Milky Way and therefore the strong star formation occurring in the spiral arms has no strong impact on the molecular gas in the spiral arms. Extinction inferred from the derived H_2 column density is very high (A_V about 15 - 30 mag), about a factor of 5-10 higher than the average value derived toward HII regions. Thus a significant fraction of the ongoing star formation could be hidden inside the dust lanes of the spiral arms. A comparison of MIPS 24um and H_alpha data, however, suggests that this is not the case and most of the GMCs studied here are not (yet) forming stars. We also present low (4.5") resolution OVRO maps of the HCN(1-0) and HCO+(1-0) emission at the location of the brightest 12CO(1-0) peak.Comment: 41 pages, 12 figures, 7 tables; accepted for publication by Ap
    • …
    corecore